o
    ҷh]                     @  s  d Z ddlmZ ddlZddlZddlZddlmZmZm	Z	 ddl
Z
ddl
mZ ddlmZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZ ddlZddlmZmZ ddlmZ ddl m!Z! ddl"m#Z#m$Z$m%Z%m&Z&m'Z' erddl(m)Z)m*Z*m+Z+m,Z,m-Z- dEddZ.			dFdGd$d%Z/G d&d dZ0G d'd( d(e0Z1G d)d* d*e0Z2eed d+		,	-				dHdId9d:Z3eed d+d,ddej4ej4ddfdJdCdDZ5dS )Kz parquet compat     )annotationsN)TYPE_CHECKINGAnyLiteral)catch_warnings)using_pyarrow_string_dtype)lib)import_optional_dependencyAbstractMethodError)doc)find_stack_level)check_dtype_backend)	DataFrame
get_option)_shared_docs)arrow_string_types_mapper)	IOHandles
get_handleis_fsspec_urlis_urlstringify_path)DtypeBackendFilePath
ReadBufferStorageOptionsWriteBufferenginestrreturnBaseImplc                 C  s   | dkrt d} | dkr>ttg}d}|D ]"}z| W   S  ty6 } z|dt| 7 }W Y d}~qd}~ww td| | dkrEt S | dkrLt S td	)
zreturn our implementationautozio.parquet.engine z
 - NzUnable to find a usable engine; tried using: 'pyarrow', 'fastparquet'.
A suitable version of pyarrow or fastparquet is required for parquet support.
Trying to import the above resulted in these errors:pyarrowfastparquetz.engine must be one of 'pyarrow', 'fastparquet')r   PyArrowImplFastParquetImplImportErrorr   
ValueError)r   engine_classes
error_msgsengine_classerr r-   D/var/www/html/venv/lib/python3.10/site-packages/pandas/io/parquet.py
get_engine2   s,   
r/   rbFpath1FilePath | ReadBuffer[bytes] | WriteBuffer[bytes]fsr   storage_optionsStorageOptions | Nonemodeis_dirboolVtuple[FilePath | ReadBuffer[bytes] | WriteBuffer[bytes], IOHandles[bytes] | None, Any]c           
   	   C  s\  t | }|dur;tddd}tddd}|dur%t||jr%|r$tdn|dur1t||jjr1n
tdt|j	 t
|r}|du r}|du rftd}td}z
|j| \}}W n t|jfye   Y nw |du r|td}|jj|fi |pwi \}}n|rt|r|d	krtd
d}	|s|st|trtj|st||d|d}	d}|	j}||	|fS )zFile handling for PyArrow.Nz
pyarrow.fsignore)errorsfsspecz8storage_options not supported with a pyarrow FileSystem.z9filesystem must be a pyarrow or fsspec FileSystem, not a r#   r0   z8storage_options passed with buffer, or non-supported URLFis_textr4   )r   r	   
isinstance
FileSystemNotImplementedErrorspecAbstractFileSystemr(   type__name__r   from_uri	TypeErrorArrowInvalidcore	url_to_fsr   r   osr1   isdirr   handle)
r1   r3   r4   r6   r7   path_or_handlepa_fsr<   pahandlesr-   r-   r.   _get_path_or_handleT   sf   


	
rR   c                   @  s0   e Zd ZedddZdddZddd
dZd	S )r    dfr   r   Nonec                 C  s   t | ts	tdd S )Nz+to_parquet only supports IO with DataFrames)r?   r   r(   )rS   r-   r-   r.   validate_dataframe   s   
zBaseImpl.validate_dataframec                 K     t | Nr
   )selfrS   r1   compressionkwargsr-   r-   r.   write      zBaseImpl.writeNc                 K  rV   rW   r
   )rX   r1   columnsrZ   r-   r-   r.   read   r\   zBaseImpl.read)rS   r   r   rT   )rS   r   rW   )r   r   )rE   
__module____qualname__staticmethodrU   r[   r^   r-   r-   r-   r.   r       s
    
c                   @  sF   e Zd ZdddZ					ddddZdddejddfdddZdS ) r%   r   rT   c                 C  s&   t ddd dd l}dd l}|| _d S )Nr#   z(pyarrow is required for parquet support.extrar   )r	   pyarrow.parquet(pandas.core.arrays.arrow.extension_typesapi)rX   r#   pandasr-   r-   r.   __init__   s   
zPyArrowImpl.__init__snappyNrS   r   r1   FilePath | WriteBuffer[bytes]rY   
str | Noneindexbool | Noner4   r5   partition_colslist[str] | Nonec                 K  sF  |  | d|dd i}	|d ur||	d< | jjj|fi |	}
|jr:dt|ji}|
jj	}i ||}|

|}
t|||d|d ud\}}}t|tjrgt|drgt|jttfrg|j}t|trg| }z1|d ur}| jjj|
|f|||d| n| jjj|
|f||d| W |d ur|  d S d S |d ur|  w w )	Nschemapreserve_indexPANDAS_ATTRSwb)r4   r6   r7   name)rY   rn   
filesystem)rY   ru   )rU   poprf   Tablefrom_pandasattrsjsondumpsrp   metadatareplace_schema_metadatarR   r?   ioBufferedWriterhasattrrt   r   bytesdecodeparquetwrite_to_datasetwrite_tableclose)rX   rS   r1   rY   rl   r4   rn   ru   rZ   from_pandas_kwargstabledf_metadataexisting_metadatamerged_metadatarN   rQ   r-   r-   r.   r[      sj   





zPyArrowImpl.writeFuse_nullable_dtypesr8   dtype_backendDtypeBackend | lib.NoDefaultc                 K  s"  d|d< i }	|dkrddl m}
 |
 }|j|	d< n|dkr#tj|	d< nt r+t |	d< td}|d	kr7d|	d
< t|||dd\}}}zD| j	j
j|f|||d|}|jdi |	}|d	kre|jd	dd}|jjr{d|jjv r{|jjd }t||_|W |d ur|  S S |d ur|  w w )NTuse_pandas_metadatanumpy_nullabler   )_arrow_dtype_mappingtypes_mapperr#   zmode.data_managerarraysplit_blocksr0   )r4   r6   )r]   ru   filtersF)copys   PANDAS_ATTRSr-   )pandas.io._utilr   getpd
ArrowDtyper   r   r   rR   rf   r   
read_table	to_pandas_as_managerrp   r|   rz   loadsry   r   )rX   r1   r]   r   r   r   r4   ru   rZ   to_pandas_kwargsr   mappingmanagerrN   rQ   pa_tableresultr   r-   r-   r.   r^      sT   



zPyArrowImpl.readr   rT   ri   NNNN)rS   r   r1   rj   rY   rk   rl   rm   r4   r5   rn   ro   r   rT   )r   r8   r   r   r4   r5   r   r   )rE   r_   r`   rh   r[   r   
no_defaultr^   r-   r-   r-   r.   r%      s    
Dr%   c                   @  s@   e Zd ZdddZ					ddddZ				ddddZdS )r&   r   rT   c                 C  s   t ddd}|| _d S )Nr$   z,fastparquet is required for parquet support.rb   )r	   rf   )rX   r$   r-   r-   r.   rh   '  s   
zFastParquetImpl.__init__ri   NrS   r   rY   *Literal['snappy', 'gzip', 'brotli'] | Noner4   r5   c           	        s   |  | d|v r|d urtdd|v r|d}|d ur"d|d< |d ur*tdt|}t|r@td  fdd|d	< nrFtd
tdd | jj	||f|||d| W d    d S 1 sfw   Y  d S )Npartition_onzYCannot use both partition_on and partition_cols. Use partition_cols for partitioning datahivefile_scheme9filesystem is not implemented for the fastparquet engine.r<   c                   s    j | dfi p	i   S )Nrs   )open)r1   _r<   r4   r-   r.   <lambda>R  s    z'FastParquetImpl.write.<locals>.<lambda>	open_withz?storage_options passed with file object or non-fsspec file pathT)record)rY   write_indexr   )
rU   r(   rv   rA   r   r   r	   r   rf   r[   )	rX   rS   r1   rY   rl   rn   r4   ru   rZ   r-   r   r.   r[   /  sB   

"zFastParquetImpl.writec                 K  s  i }| dd}| dtj}	d|d< |rtd|	tjur"td|d ur*tdt|}d }
t|rHtd}|j|d	fi |pAi j	|d
< nt
|tr^tj|s^t|d	d|d}
|
j}z| jj|fi |}|jd||d|W |
d ur}|
  S S |
d ur|
  w w )Nr   Fr   pandas_nullszNThe 'use_nullable_dtypes' argument is not supported for the fastparquet enginezHThe 'dtype_backend' argument is not supported for the fastparquet enginer   r<   r0   r3   r=   )r]   r   r-   )rv   r   r   r(   rA   r   r   r	   r   r3   r?   r   rK   r1   rL   r   rM   rf   ParquetFiler   r   )rX   r1   r]   r   r4   ru   rZ   parquet_kwargsr   r   rQ   r<   parquet_filer-   r-   r.   r^   d  sD   	
 


zFastParquetImpl.readr   r   )rS   r   rY   r   r4   r5   r   rT   )NNNN)r4   r5   r   r   )rE   r_   r`   rh   r[   r^   r-   r-   r-   r.   r&   &  s    
8r&   )r4   r!   ri   rS   r   $FilePath | WriteBuffer[bytes] | NonerY   rk   rl   rm   rn   ro   ru   bytes | Nonec                 K  sp   t |tr|g}t|}	|du rt n|}
|	j| |
f|||||d| |du r6t |
tjs2J |
 S dS )a	  
    Write a DataFrame to the parquet format.

    Parameters
    ----------
    df : DataFrame
    path : str, path object, file-like object, or None, default None
        String, path object (implementing ``os.PathLike[str]``), or file-like
        object implementing a binary ``write()`` function. If None, the result is
        returned as bytes. If a string, it will be used as Root Directory path
        when writing a partitioned dataset. The engine fastparquet does not
        accept file-like objects.

        .. versionchanged:: 1.2.0

    engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
        Parquet library to use. If 'auto', then the option
        ``io.parquet.engine`` is used. The default ``io.parquet.engine``
        behavior is to try 'pyarrow', falling back to 'fastparquet' if
        'pyarrow' is unavailable.

        When using the ``'pyarrow'`` engine and no storage options are provided
        and a filesystem is implemented by both ``pyarrow.fs`` and ``fsspec``
        (e.g. "s3://"), then the ``pyarrow.fs`` filesystem is attempted first.
        Use the filesystem keyword with an instantiated fsspec filesystem
        if you wish to use its implementation.
    compression : {{'snappy', 'gzip', 'brotli', 'lz4', 'zstd', None}},
        default 'snappy'. Name of the compression to use. Use ``None``
        for no compression.
    index : bool, default None
        If ``True``, include the dataframe's index(es) in the file output. If
        ``False``, they will not be written to the file.
        If ``None``, similar to ``True`` the dataframe's index(es)
        will be saved. However, instead of being saved as values,
        the RangeIndex will be stored as a range in the metadata so it
        doesn't require much space and is faster. Other indexes will
        be included as columns in the file output.
    partition_cols : str or list, optional, default None
        Column names by which to partition the dataset.
        Columns are partitioned in the order they are given.
        Must be None if path is not a string.
    {storage_options}

        .. versionadded:: 1.2.0

    filesystem : fsspec or pyarrow filesystem, default None
        Filesystem object to use when reading the parquet file. Only implemented
        for ``engine="pyarrow"``.

        .. versionadded:: 2.1.0

    kwargs
        Additional keyword arguments passed to the engine

    Returns
    -------
    bytes if no path argument is provided else None
    N)rY   rl   rn   r4   ru   )r?   r   r/   r~   BytesIOr[   getvalue)rS   r1   r   rY   rl   r4   rn   ru   rZ   implpath_or_bufr-   r-   r.   
to_parquet  s(   
Fr   FilePath | ReadBuffer[bytes]r]   r   bool | lib.NoDefaultr   r   r   &list[tuple] | list[list[tuple]] | Nonec              	   K  sf   t |}	|tjurd}
|du r|
d7 }
tj|
tt d nd}t| |	j| f||||||d|S )a  
    Load a parquet object from the file path, returning a DataFrame.

    Parameters
    ----------
    path : str, path object or file-like object
        String, path object (implementing ``os.PathLike[str]``), or file-like
        object implementing a binary ``read()`` function.
        The string could be a URL. Valid URL schemes include http, ftp, s3,
        gs, and file. For file URLs, a host is expected. A local file could be:
        ``file://localhost/path/to/table.parquet``.
        A file URL can also be a path to a directory that contains multiple
        partitioned parquet files. Both pyarrow and fastparquet support
        paths to directories as well as file URLs. A directory path could be:
        ``file://localhost/path/to/tables`` or ``s3://bucket/partition_dir``.
    engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
        Parquet library to use. If 'auto', then the option
        ``io.parquet.engine`` is used. The default ``io.parquet.engine``
        behavior is to try 'pyarrow', falling back to 'fastparquet' if
        'pyarrow' is unavailable.

        When using the ``'pyarrow'`` engine and no storage options are provided
        and a filesystem is implemented by both ``pyarrow.fs`` and ``fsspec``
        (e.g. "s3://"), then the ``pyarrow.fs`` filesystem is attempted first.
        Use the filesystem keyword with an instantiated fsspec filesystem
        if you wish to use its implementation.
    columns : list, default=None
        If not None, only these columns will be read from the file.
    {storage_options}

        .. versionadded:: 1.3.0

    use_nullable_dtypes : bool, default False
        If True, use dtypes that use ``pd.NA`` as missing value indicator
        for the resulting DataFrame. (only applicable for the ``pyarrow``
        engine)
        As new dtypes are added that support ``pd.NA`` in the future, the
        output with this option will change to use those dtypes.
        Note: this is an experimental option, and behaviour (e.g. additional
        support dtypes) may change without notice.

        .. deprecated:: 2.0

    dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
        Back-end data type applied to the resultant :class:`DataFrame`
        (still experimental). Behaviour is as follows:

        * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
          (default).
        * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
          DataFrame.

        .. versionadded:: 2.0

    filesystem : fsspec or pyarrow filesystem, default None
        Filesystem object to use when reading the parquet file. Only implemented
        for ``engine="pyarrow"``.

        .. versionadded:: 2.1.0

    filters : List[Tuple] or List[List[Tuple]], default None
        To filter out data.
        Filter syntax: [[(column, op, val), ...],...]
        where op is [==, =, >, >=, <, <=, !=, in, not in]
        The innermost tuples are transposed into a set of filters applied
        through an `AND` operation.
        The outer list combines these sets of filters through an `OR`
        operation.
        A single list of tuples can also be used, meaning that no `OR`
        operation between set of filters is to be conducted.

        Using this argument will NOT result in row-wise filtering of the final
        partitions unless ``engine="pyarrow"`` is also specified.  For
        other engines, filtering is only performed at the partition level, that is,
        to prevent the loading of some row-groups and/or files.

        .. versionadded:: 2.1.0

    **kwargs
        Any additional kwargs are passed to the engine.

    Returns
    -------
    DataFrame

    See Also
    --------
    DataFrame.to_parquet : Create a parquet object that serializes a DataFrame.

    Examples
    --------
    >>> original_df = pd.DataFrame(
    ...     {{"foo": range(5), "bar": range(5, 10)}}
    ...    )
    >>> original_df
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    >>> df_parquet_bytes = original_df.to_parquet()
    >>> from io import BytesIO
    >>> restored_df = pd.read_parquet(BytesIO(df_parquet_bytes))
    >>> restored_df
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    >>> restored_df.equals(original_df)
    True
    >>> restored_bar = pd.read_parquet(BytesIO(df_parquet_bytes), columns=["bar"])
    >>> restored_bar
        bar
    0    5
    1    6
    2    7
    3    8
    4    9
    >>> restored_bar.equals(original_df[['bar']])
    True

    The function uses `kwargs` that are passed directly to the engine.
    In the following example, we use the `filters` argument of the pyarrow
    engine to filter the rows of the DataFrame.

    Since `pyarrow` is the default engine, we can omit the `engine` argument.
    Note that the `filters` argument is implemented by the `pyarrow` engine,
    which can benefit from multithreading and also potentially be more
    economical in terms of memory.

    >>> sel = [("foo", ">", 2)]
    >>> restored_part = pd.read_parquet(BytesIO(df_parquet_bytes), filters=sel)
    >>> restored_part
        foo  bar
    0    3    8
    1    4    9
    zYThe argument 'use_nullable_dtypes' is deprecated and will be removed in a future version.TzFUse dtype_backend='numpy_nullable' instead of use_nullable_dtype=True.)
stacklevelF)r]   r   r4   r   r   ru   )	r/   r   r   warningswarnFutureWarningr   r   r^   )r1   r   r]   r4   r   r   ru   r   rZ   r   msgr-   r-   r.   read_parquet  s0    
r   )r   r   r   r    )Nr0   F)r1   r2   r3   r   r4   r5   r6   r   r7   r8   r   r9   )Nr!   ri   NNNN)rS   r   r1   r   r   r   rY   rk   rl   rm   r4   r5   rn   ro   ru   r   r   r   )r1   r   r   r   r]   ro   r4   r5   r   r   r   r   ru   r   r   r   r   r   )6__doc__
__future__r   r~   rz   rK   typingr   r   r   r   r   pandas._configr   pandas._libsr   pandas.compat._optionalr	   pandas.errorsr   pandas.util._decoratorsr   pandas.util._exceptionsr   pandas.util._validatorsr   rg   r   r   r   pandas.core.shared_docsr   r   r   pandas.io.commonr   r   r   r   r   pandas._typingr   r   r   r   r   r/   rR   r    r%   r&   r   r   r   r-   r-   r-   r.   <module>   sb    
	%? q]