o
    ҷh}                     @  s   d dl mZ d dlmZmZmZ d dlmZ d dlm	Z	 d dl
mZ dddddddZdddddddZdddddddZdddddddZdS )    )annotations)CallableHashableSequence)conv_sequences)is_none)Jaro_pyg?Nprefix_weight	processorscore_cutoffs1Sequence[Hashable]s2r
   floatr   (Callable[..., Sequence[Hashable]] | Noner   float | Nonereturnc                C  s  t | st |r
dS |dur|| } ||}|du rd}t| |\} }t| }t|}t||}d}t|d}	t|	D ]}
| | || krG n|d7 }q;|}|dkrh|| }|dkr]d}ntd|| |d  }tj| ||d}|dkr~||| d|  7 }||kr|S dS )	a  
    Calculates the jaro winkler similarity

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    prefix_weight : float, optional
        Weight used for the common prefix of the two strings.
        Has to be between 0 and 0.25. Default is 0.1.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For ratio < score_cutoff 0 is returned instead. Default is None,
        which deactivates this behaviour.

    Returns
    -------
    similarity : float
        similarity between s1 and s2 as a float between 0 and 1.0

    Raises
    ------
    ValueError
        If prefix_weight is invalid
    g        Nr         gffffff?      ?)r   )r   r   lenminrangemaxJaro
similarity)r   r   r
   r   r   P_lenT_lenmin_lenprefix
max_prefix_jaro_score_cutoff
prefix_simSim r&   T/var/www/html/venv/lib/python3.10/site-packages/rapidfuzz/distance/JaroWinkler_py.pyr      s6   &


r   c                C     t | ||||dS )a  
    Calculates the normalized jaro winkler similarity

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    prefix_weight : float, optional
        Weight used for the common prefix of the two strings.
        Has to be between 0 and 0.25. Default is 0.1.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For ratio < score_cutoff 0 is returned instead. Default is None,
        which deactivates this behaviour.

    Returns
    -------
    normalized similarity : float
        normalized similarity between s1 and s2 as a float between 0 and 1.0

    Raises
    ------
    ValueError
        If prefix_weight is invalid
    r	   )r   r   r   r
   r   r   r&   r&   r'   normalized_similarityY      &r*   c                C  sx   t | st |r
dS |dur|| } ||}|du s|dkr dnd| }t| |||d}d| }|du s8||kr:|S dS )a  
    Calculates the jaro winkler distance

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    prefix_weight : float, optional
        Weight used for the common prefix of the two strings.
        Has to be between 0 and 0.25. Default is 0.1.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For ratio < score_cutoff 0 is returned instead. Default is None,
        which deactivates this behaviour.

    Returns
    -------
    distance : float
        distance between s1 and s2 as a float between 1.0 and 0.0

    Raises
    ------
    ValueError
        If prefix_weight is invalid
    r   N)r
   r   )r   r   )r   r   r
   r   r   cutoff_distancesimdistr&   r&   r'   distance   s   &r/   c                C  r(   )a  
    Calculates the normalized jaro winkler distance

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    prefix_weight : float, optional
        Weight used for the common prefix of the two strings.
        Has to be between 0 and 0.25. Default is 0.1.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For ratio < score_cutoff 0 is returned instead. Default is None,
        which deactivates this behaviour.

    Returns
    -------
    normalized distance : float
        normalized distance between s1 and s2 as a float between 1.0 and 0.0

    Raises
    ------
    ValueError
        If prefix_weight is invalid
    r	   )r/   r)   r&   r&   r'   normalized_distance   r+   r0   )r   r   r   r   r
   r   r   r   r   r   r   r   )
__future__r   typingr   r   r   rapidfuzz._common_pyr   rapidfuzz._utilsr   rapidfuzz.distancer   r   r   r*   r/   r0   r&   r&   r&   r'   <module>   s*   P37