o
    ҷhXF                     @  s<  d dl mZ d dlZd dlmZ d dlZd dlmZ d dl	m
Z
 d dlmZ d dlmZ d dlm  mZ d dlmZ d dlm  mZ d d	lmZmZ d d
lmZ d dlmZ d dlm Z  d dl!m"Z" erxd dl#m$Z$ d dl%m&Z& d dl'm(Z( ee d ddd 						d+d,ddZ)d-d.d!d"Z*	$d/d0d)d*Z+dS )1    )annotationsN)TYPE_CHECKING)Appender)is_list_like)concat_compat)notna)Categorical)Index
MultiIndex)concat)tile_compat)_shared_docs)
to_numeric)Hashable)AnyArrayLike)	DataFramemeltzpd.melt(df, zDataFrame.melt)callerothervalueTframer   
value_namer   ignore_indexboolreturnc                   s@  t  jtrdd  jD }nt j}| jv r!td| d|d urWt|s-|g}n,t  jtr<t |ts<tdt|}tt|	|}|j
sVtdt| ng }|d urt|se|g}n)t  jtrtt |tsttdt|}tt|	|}|j
stdt| |d ur j||| }	nt j|| }	 jd d |	f  n   |d ur j| _|d u rt  jtrt jjtt jjkr߈ jj}nd	d tt jjD }n jjd ur jjnd
g}t |tr|g} j\}
}|t|8 }i }|D ]:} |}t |jtjsB|dkr3t|g| dd||< qt|g |j|jd||< qt|j |||< q|| |g } jd dkrpt fddt jd D j!||< n j "d||< t#|D ]\}} j$|%|
||< q| j&||d}|st' j(||_(|S )Nc                 S     g | ]	}|D ]}|qqS  r   ).0cxr   r   K/var/www/html/venv/lib/python3.10/site-packages/pandas/core/reshape/melt.py
<listcomp>/       zmelt.<locals>.<listcomp>zvalue_name (z3) cannot match an element in the DataFrame columns.z>id_vars must be a list of tuples when columns are a MultiIndexz:The following 'id_vars' are not present in the DataFrame: zAvalue_vars must be a list of tuples when columns are a MultiIndexz=The following 'value_vars' are not present in the DataFrame: c                 S  s   g | ]}d | qS )	variable_r   r   ir   r   r    r!   o       variabler   T)r   )namedtype   c                   s   g | ]} j d d |f qS N)ilocr$   r   r   r    r!      s    Fcolumns))
isinstancer0   r
   list
ValueErrorr   r	   comflatten
differenceemptyKeyErrorget_level_valuesget_indexeralgosuniqueget_indexer_forr,   copylennamessetranger(   strshapepopr)   npr   typetile_valuesvaluesravel	enumerate_get_level_valuesrepeat_constructorr   index)r   id_vars
value_varsvar_namer   	col_levelr   colsmissingidxNKmdatacolid_datamcolumnsr%   resultr   r-   r    r   "   s   






datadropnac                   sN  t |trt| }t| }nt| \}}ttjdd |D  }t j	|}t
|d }|D ]}t
||kr@tdq4i }	g }
t||D ]\}} fdd|D }t||	|< |
| qJ|D ]}t | j||	|< qe|rtjt
|	|
d  td|
D ]
}t|	| M q sfdd	|	 D }	 j|	||
 d
S )a  
    Reshape wide-format data to long. Generalized inverse of DataFrame.pivot.

    Accepts a dictionary, ``groups``, in which each key is a new column name
    and each value is a list of old column names that will be "melted" under
    the new column name as part of the reshape.

    Parameters
    ----------
    data : DataFrame
        The wide-format DataFrame.
    groups : dict
        {new_name : list_of_columns}.
    dropna : bool, default True
        Do not include columns whose entries are all NaN.

    Returns
    -------
    DataFrame
        Reshaped DataFrame.

    See Also
    --------
    melt : Unpivot a DataFrame from wide to long format, optionally leaving
        identifiers set.
    pivot : Create a spreadsheet-style pivot table as a DataFrame.
    DataFrame.pivot : Pivot without aggregation that can handle
        non-numeric data.
    DataFrame.pivot_table : Generalization of pivot that can handle
        duplicate values for one index/column pair.
    DataFrame.unstack : Pivot based on the index values instead of a
        column.
    wide_to_long : Wide panel to long format. Less flexible but more
        user-friendly than melt.

    Examples
    --------
    >>> data = pd.DataFrame({'hr1': [514, 573], 'hr2': [545, 526],
    ...                      'team': ['Red Sox', 'Yankees'],
    ...                      'year1': [2007, 2007], 'year2': [2008, 2008]})
    >>> data
       hr1  hr2     team  year1  year2
    0  514  545  Red Sox   2007   2008
    1  573  526  Yankees   2007   2008

    >>> pd.lreshape(data, {'year': ['year1', 'year2'], 'hr': ['hr1', 'hr2']})
          team  year   hr
    0  Red Sox  2007  514
    1  Yankees  2007  573
    2  Red Sox  2008  545
    3  Yankees  2008  526
    c                 s  s    | ]}t |V  qd S r+   )rA   )r   r   r   r   r    	<genexpr>       zlreshape.<locals>.<genexpr>r   z$All column lists must be same lengthc                   s   g | ]} | j qS r   )rI   r   r[   )r_   r   r    r!      r&   zlreshape.<locals>.<listcomp>)r)   c                   s   i | ]	\}}||  qS r   r   )r   kv)maskr   r    
<dictcomp>   r"   zlreshape.<locals>.<dictcomp>r/   )r1   dictr2   keysrJ   ziprA   unionr0   r6   r?   r3   r   appendrF   rH   rI   onesr   r   allitemsrO   )r_   groupsr`   ri   rJ   all_colsid_colsrY   seqrZ   
pivot_colstargetr@   	to_concatr[   r   r   )r_   rf   r    lreshape   s4   
5rw    \d+dfseprC   suffixc                   s>  ddddd	d
t sgnttfdd jD r&tdt s.gnt    r>td fddD }dd |D }tt j |} fddt	|D }	|	d j
|	dd dd}
tdkr | 
|
}|S  | j|
 dg }|S )ax   
    Unpivot a DataFrame from wide to long format.

    Less flexible but more user-friendly than melt.

    With stubnames ['A', 'B'], this function expects to find one or more
    group of columns with format
    A-suffix1, A-suffix2,..., B-suffix1, B-suffix2,...
    You specify what you want to call this suffix in the resulting long format
    with `j` (for example `j='year'`)

    Each row of these wide variables are assumed to be uniquely identified by
    `i` (can be a single column name or a list of column names)

    All remaining variables in the data frame are left intact.

    Parameters
    ----------
    df : DataFrame
        The wide-format DataFrame.
    stubnames : str or list-like
        The stub name(s). The wide format variables are assumed to
        start with the stub names.
    i : str or list-like
        Column(s) to use as id variable(s).
    j : str
        The name of the sub-observation variable. What you wish to name your
        suffix in the long format.
    sep : str, default ""
        A character indicating the separation of the variable names
        in the wide format, to be stripped from the names in the long format.
        For example, if your column names are A-suffix1, A-suffix2, you
        can strip the hyphen by specifying `sep='-'`.
    suffix : str, default '\\d+'
        A regular expression capturing the wanted suffixes. '\\d+' captures
        numeric suffixes. Suffixes with no numbers could be specified with the
        negated character class '\\D+'. You can also further disambiguate
        suffixes, for example, if your wide variables are of the form A-one,
        B-two,.., and you have an unrelated column A-rating, you can ignore the
        last one by specifying `suffix='(!?one|two)'`. When all suffixes are
        numeric, they are cast to int64/float64.

    Returns
    -------
    DataFrame
        A DataFrame that contains each stub name as a variable, with new index
        (i, j).

    See Also
    --------
    melt : Unpivot a DataFrame from wide to long format, optionally leaving
        identifiers set.
    pivot : Create a spreadsheet-style pivot table as a DataFrame.
    DataFrame.pivot : Pivot without aggregation that can handle
        non-numeric data.
    DataFrame.pivot_table : Generalization of pivot that can handle
        duplicate values for one index/column pair.
    DataFrame.unstack : Pivot based on the index values instead of a
        column.

    Notes
    -----
    All extra variables are left untouched. This simply uses
    `pandas.melt` under the hood, but is hard-coded to "do the right thing"
    in a typical case.

    Examples
    --------
    >>> np.random.seed(123)
    >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
    ...                    "A1980" : {0 : "d", 1 : "e", 2 : "f"},
    ...                    "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
    ...                    "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
    ...                    "X"     : dict(zip(range(3), np.random.randn(3)))
    ...                   })
    >>> df["id"] = df.index
    >>> df
      A1970 A1980  B1970  B1980         X  id
    0     a     d    2.5    3.2 -1.085631   0
    1     b     e    1.2    1.3  0.997345   1
    2     c     f    0.7    0.1  0.282978   2
    >>> pd.wide_to_long(df, ["A", "B"], i="id", j="year")
    ... # doctest: +NORMALIZE_WHITESPACE
                    X  A    B
    id year
    0  1970 -1.085631  a  2.5
    1  1970  0.997345  b  1.2
    2  1970  0.282978  c  0.7
    0  1980 -1.085631  d  3.2
    1  1980  0.997345  e  1.3
    2  1980  0.282978  f  0.1

    With multiple id columns

    >>> df = pd.DataFrame({
    ...     'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
    ...     'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
    ...     'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
    ...     'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
    ... })
    >>> df
       famid  birth  ht1  ht2
    0      1      1  2.8  3.4
    1      1      2  2.9  3.8
    2      1      3  2.2  2.9
    3      2      1  2.0  3.2
    4      2      2  1.8  2.8
    5      2      3  1.9  2.4
    6      3      1  2.2  3.3
    7      3      2  2.3  3.4
    8      3      3  2.1  2.9
    >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age')
    >>> l
    ... # doctest: +NORMALIZE_WHITESPACE
                      ht
    famid birth age
    1     1     1    2.8
                2    3.4
          2     1    2.9
                2    3.8
          3     1    2.2
                2    2.9
    2     1     1    2.0
                2    3.2
          2     1    1.8
                2    2.8
          3     1    1.9
                2    2.4
    3     1     1    2.2
                2    3.3
          2     1    2.3
                2    3.4
          3     1    2.1
                2    2.9

    Going from long back to wide just takes some creative use of `unstack`

    >>> w = l.unstack()
    >>> w.columns = w.columns.map('{0[0]}{0[1]}'.format)
    >>> w.reset_index()
       famid  birth  ht1  ht2
    0      1      1  2.8  3.4
    1      1      2  2.9  3.8
    2      1      3  2.2  2.9
    3      2      1  2.0  3.2
    4      2      2  1.8  2.8
    5      2      3  1.9  2.4
    6      3      1  2.2  3.3
    7      3      2  2.3  3.4
    8      3      3  2.1  2.9

    Less wieldy column names are also handled

    >>> np.random.seed(0)
    >>> df = pd.DataFrame({'A(weekly)-2010': np.random.rand(3),
    ...                    'A(weekly)-2011': np.random.rand(3),
    ...                    'B(weekly)-2010': np.random.rand(3),
    ...                    'B(weekly)-2011': np.random.rand(3),
    ...                    'X' : np.random.randint(3, size=3)})
    >>> df['id'] = df.index
    >>> df # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS
       A(weekly)-2010  A(weekly)-2011  B(weekly)-2010  B(weekly)-2011  X  id
    0        0.548814        0.544883        0.437587        0.383442  0   0
    1        0.715189        0.423655        0.891773        0.791725  1   1
    2        0.602763        0.645894        0.963663        0.528895  1   2

    >>> pd.wide_to_long(df, ['A(weekly)', 'B(weekly)'], i='id',
    ...                 j='year', sep='-')
    ... # doctest: +NORMALIZE_WHITESPACE
             X  A(weekly)  B(weekly)
    id year
    0  2010  0   0.548814   0.437587
    1  2010  1   0.715189   0.891773
    2  2010  1   0.602763   0.963663
    0  2011  0   0.544883   0.383442
    1  2011  1   0.423655   0.791725
    2  2011  1   0.645894   0.528895

    If we have many columns, we could also use a regex to find our
    stubnames and pass that list on to wide_to_long

    >>> stubnames = sorted(
    ...     set([match[0] for match in df.columns.str.findall(
    ...         r'[A-B]\(.*\)').values if match != []])
    ... )
    >>> list(stubnames)
    ['A(weekly)', 'B(weekly)']

    All of the above examples have integers as suffixes. It is possible to
    have non-integers as suffixes.

    >>> df = pd.DataFrame({
    ...     'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
    ...     'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
    ...     'ht_one': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
    ...     'ht_two': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
    ... })
    >>> df
       famid  birth  ht_one  ht_two
    0      1      1     2.8     3.4
    1      1      2     2.9     3.8
    2      1      3     2.2     2.9
    3      2      1     2.0     3.2
    4      2      2     1.8     2.8
    5      2      3     1.9     2.4
    6      3      1     2.2     3.3
    7      3      2     2.3     3.4
    8      3      3     2.1     2.9

    >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age',
    ...                     sep='_', suffix=r'\w+')
    >>> l
    ... # doctest: +NORMALIZE_WHITESPACE
                      ht
    famid birth age
    1     1     one  2.8
                two  3.4
          2     one  2.9
                two  3.8
          3     one  2.2
                two  2.9
    2     1     one  2.0
                two  3.2
          2     one  1.8
                two  2.8
          3     one  1.9
                two  2.4
    3     1     one  2.2
                two  3.3
          2     one  2.3
                two  3.4
          3     one  2.1
                two  2.9
    stubrC   r{   r|   r   	list[str]c                   s>   dt | t | | d}t |  fdd| jD S )N^$c                   s   g | ]	}  |r|qS r   )matchrc   patternr   r    r!     r"   z7wide_to_long.<locals>.get_var_names.<locals>.<listcomp>)reescapecompiler0   )rz   r}   r{   r|   regexr   r   r    get_var_names  s    
z#wide_to_long.<locals>.get_var_namesc                 S  sp   t | |||||d}t|| ||< || jjt|| ddd||< t|| dd||< |||g S )N)rQ   rR   r   rS   rx   T)r   ignore)errors)	r   rstripr   rC   replacer   r   r   	set_index)rz   r}   r%   jrR   r{   newdfr   r   r    	melt_stub  s   $zwide_to_long.<locals>.melt_stubc                 3  s    | ]}| v V  qd S r+   r   rc   )	stubnamesr   r    ra     rb   zwide_to_long.<locals>.<genexpr>z,stubname can't be identical to a column namez3the id variables need to uniquely identify each rowc                   s   g | ]	} |qS r   r   )r   r}   )rz   r   r{   r|   r   r    r!     r"   z wide_to_long.<locals>.<listcomp>c                 S  r   r   r   )r   sublister   r   r    r!   	  r"   c              	     s"   g | ]\}} ||qS r   r   )r   sre   )rz   r%   r   r   r{   r   r    r!     s   " r   r*   Nouter)how)on)r}   rC   r{   rC   r|   rC   r   r~   )r}   rC   r{   rC   )r   r2   anyr0   r3   
duplicatedrA   tolistr6   rj   joinr?   r   mergereset_index)rz   r   r%   r   r{   r|   rR   value_vars_flattenedrQ   _meltedmeltednewr   )rz   r   r%   r   r   r{   r   r|   r    wide_to_long   s.    
o
 "r   )NNNr   NT)r   r   r   r   r   r   r   r   )T)r_   r   r`   r   r   r   )rx   ry   )rz   r   r{   rC   r|   rC   r   r   ),
__future__r   r   typingr   numpyrF   pandas.util._decoratorsr   pandas.core.dtypes.commonr   pandas.core.dtypes.concatr   pandas.core.dtypes.missingr   pandas.core.algorithmscore
algorithmsr;   pandas.core.arraysr   pandas.core.commoncommonr4   pandas.core.indexes.apir	   r
   pandas.core.reshape.concatr   pandas.core.reshape.utilr   pandas.core.shared_docsr   pandas.core.tools.numericr   collections.abcr   pandas._typingr   pandasr   r   rw   r   r   r   r   r    <module>   s>    w[