o
    ҷhI                    @  s  d dl mZ d dlmZmZ d dlmZ d dlZd dlmZm	Z	m
Z
mZmZmZmZmZ d dlZd dlZd dlmZmZ d dlmZ d dlmZmZmZmZmZmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z( d d	l)m*Z*m+Z+ d d
l,m-Z- d dl.m/Z/ d dl0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;m<Z<m=Z=m>Z>m?Z?m@Z@ d dlAmBZC d dlDmEZEmFZFmGZG d dlHmIZImJZJmKZK d dlLmMZM d dlNmOZOmPZPmQZQmRZRmSZSmTZT d dlUmVZVmWZWmXZXmYZY d dlZm[Z[m\Z\ d dl]m^Z^m_Z_ d dl`maZambZbmcZcmdZd d dlemfZfmgZgmhZhmiZi d dljmkZk d dllmmZm d dlnmoZompZp d dlqmrZr d dlsmtZt d dlumvZv d dlwmx  myZz d dl{m|Z}m~Z~mZ d dlmZmZ d dlmZ d d lmZmZ d d!lmZ errd d"lmZmZ d d#lmZ d d$lmZmZmZ ee3ef ZdPd'd(ZdQd,d-ZG d.d/ d/emeoZG d0d1 d1eZd2Zd3Zd4Zd5ZG d6d7 d7eZdRd;d<ZedSd?d@ZedTdCd@ZdUdFd@ZdVdHdIZdJdK ZdWdNdOZdS )X    )annotations)datetime	timedelta)wrapsN)TYPE_CHECKINGAnyCallableLiteralUnioncastfinaloverload)algoslib)NDArrayBacked)
BaseOffsetIncompatibleFrequencyNaTNaTTypePeriod
ResolutionTick	Timedelta	Timestampastype_overflowsafedelta_to_nanosecondsget_unit_from_dtypeiNaTints_to_pydatetimeints_to_pytimedelta	to_offset)RoundToround_nsint64)compare_mismatched_resolutions)integer_op_not_supported)	ArrayLikeAxisIntDatetimeLikeScalarDtypeDtypeObjFInterpolateOptionsNpDtypePositionalIndexer2DPositionalIndexerTupleScalarIndexerSelfSequenceIndexerTimeAmbiguousTimeNonexistentnpt)function)AbstractMethodErrorInvalidComparisonPerformanceWarning)AppenderSubstitutioncache_readonly)find_stack_level)is_all_stringsis_integer_dtypeis_list_likeis_object_dtypeis_string_dtypepandas_dtype)CategoricalDtypeDatetimeTZDtypeExtensionDtypePeriodDtype)ABCCategoricalABCMultiIndex)is_valid_na_for_dtypeisna)
algorithmsmissingnanopsops)checked_add_with_arrisin	map_arrayunique1d)datetimelike_accumulations)OpsMixin)NDArrayBackedExtensionArrayravel_compat)ArrowExtensionArray)ExtensionArray)IntegerArray)arrayensure_wrapped_if_datetimelikeextract_array)check_array_indexercheck_setitem_lengths)unpack_zerodim_and_defer)invalid_comparisonmake_invalid_op)frequencies)IteratorSequenceIndex)DatetimeArrayPeriodArrayTimedeltaArrayop_namestrc                 C  s   t | }t| |S N)ra   r_   )rj   op rn   R/var/www/html/venv/lib/python3.10/site-packages/pandas/core/arrays/datetimelike.py_make_unpacked_invalid_op   s   rp   methr*   returnc                   s   t   fdd}tt|S )z
    For PeriodArray methods, dispatch to DatetimeArray and re-wrap the results
    in PeriodArray.  We cannot use ._ndarray directly for the affected
    methods because the i8 data has different semantics on NaT values.
    c                   sx   t | jts | g|R i |S | d} |g|R i |}|tu r'tS t |tr2| |jS |d}| |S )NM8[ns]i8)	
isinstancedtyperF   viewr   r   	_box_func_value_from_backing_data)selfargskwargsarrresultres_i8rq   rn   ro   new_meth   s   



z"_period_dispatch.<locals>.new_meth)r   r   r*   )rq   r   rn   r   ro   _period_dispatch   s   
r   c                      s  e Zd ZU dZded< ded< ded< ded	< d
ed< edddZ	ddddZedddZ	dddZ
dd!d"Zdd$d%Zd&d' Zdd(d)Zdd+d,Zedd.d/Zd0dd1dd5d6Zdd d8d9Zddd;d<Zedd?d@ZeddCd@Zd fdGd@ZddHdIZd fdLdMZddNdOZd	d
 fdQdRZeddSdTZeddWdTZeddZdTZeddd]dTZdd fd^dTZd_d` ZddPdaddddeZdddfdgZdddidjZdkdl Ze ddndoZ!e"ddpdqZ#ddsdtZ$ddudvZ%eddwdxZ&eddydzZ'e(dfdd|d}Z)edddZ*edddZ+edddZ,edddZ-edddZ.edddZ/edddZ0dd Z1e2dZ3e2dZ4e2dZ5e2dZ6e2dZ7e2dZ8e2dZ9e2dZ:e2dZ;e2dZ<e2dZ=e2dZ>e dddZ?e dddZ@e dddZAe dddZBe dddZCe dddZDe dddZEe dddZFdd ZGdd ZHd ddZIe d!ddZJe dd ZKe dd ZLe d"ddZMe d#ddZNdPdÜd$ddǄZOePdȃddʄ ZQdd̄ ZRePd̓ddτ ZSddф ZTdddӄZUdddՄZVeWd% fddڄZXeWddPdۜd&dd߄ZYeWddPdۜd&ddZZdPddd'ddZ[eWddPdۜd&ddZ\d	d(ddZ]d)ddZ^  Z_S (*  DatetimeLikeArrayMixinz
    Shared Base/Mixin class for DatetimeArray, TimedeltaArray, PeriodArray

    Assumes that __new__/__init__ defines:
        _ndarray

    and that inheriting subclass implements:
        freq
    ztuple[str, ...]_infer_matcheszCallable[[DtypeObj], bool]_is_recognized_dtypeztuple[type, ...]_recognized_scalars
np.ndarray_ndarrayBaseOffset | Nonefreqrr   boolc                 C  s   dS )NTrn   r{   rn   rn   ro   _can_hold_na      z#DatetimeLikeArrayMixin._can_hold_naNFrv   Dtype | NonecopyNonec                 C     t | rl   r6   )r{   datarv   r   r   rn   rn   ro   __init__   s   zDatetimeLikeArrayMixin.__init__type[DatetimeLikeScalar]c                 C  r   )z
        The scalar associated with this datelike

        * PeriodArray : Period
        * DatetimeArray : Timestamp
        * TimedeltaArray : Timedelta
        r   r   rn   rn   ro   _scalar_type   s   	z#DatetimeLikeArrayMixin._scalar_typevaluerk   DTScalarOrNaTc                 C  r   )ay  
        Construct a scalar type from a string.

        Parameters
        ----------
        value : str

        Returns
        -------
        Period, Timestamp, or Timedelta, or NaT
            Whatever the type of ``self._scalar_type`` is.

        Notes
        -----
        This should call ``self._check_compatible_with`` before
        unboxing the result.
        r   r{   r   rn   rn   ro   _scalar_from_string      z*DatetimeLikeArrayMixin._scalar_from_string)np.int64 | np.datetime64 | np.timedelta64c                 C  r   )a  
        Unbox the integer value of a scalar `value`.

        Parameters
        ----------
        value : Period, Timestamp, Timedelta, or NaT
            Depending on subclass.

        Returns
        -------
        int

        Examples
        --------
        >>> arr = pd.arrays.DatetimeArray(np.array(['1970-01-01'], 'datetime64[ns]'))
        >>> arr._unbox_scalar(arr[0])
        numpy.datetime64('1970-01-01T00:00:00.000000000')
        r   r   rn   rn   ro   _unbox_scalar   s   z$DatetimeLikeArrayMixin._unbox_scalarotherc                 C  r   )a|  
        Verify that `self` and `other` are compatible.

        * DatetimeArray verifies that the timezones (if any) match
        * PeriodArray verifies that the freq matches
        * Timedelta has no verification

        In each case, NaT is considered compatible.

        Parameters
        ----------
        other

        Raises
        ------
        Exception
        r   r{   r   rn   rn   ro   _check_compatible_with  r   z-DatetimeLikeArrayMixin._check_compatible_withc                 C  r   )zI
        box function to get object from internal representation
        r   )r{   xrn   rn   ro   rx   *  s   z DatetimeLikeArrayMixin._box_funcc                 C  s   t j|| jddS )z1
        apply box func to passed values
        F)convert)r   	map_inferrx   )r{   valuesrn   rn   ro   _box_values0  s   z"DatetimeLikeArrayMixin._box_valuesrc   c                   s8    j dkr fddtt D S  fdd jD S )N   c                 3  s    | ]} | V  qd S rl   rn   ).0nr   rn   ro   	<genexpr>8  s    z2DatetimeLikeArrayMixin.__iter__.<locals>.<genexpr>c                 3  s    | ]}  |V  qd S rl   )rx   )r   vr   rn   ro   r   :  s    )ndimrangelenasi8r   rn   r   ro   __iter__6  s   
zDatetimeLikeArrayMixin.__iter__npt.NDArray[np.int64]c                 C  s   | j dS )z
        Integer representation of the values.

        Returns
        -------
        ndarray
            An ndarray with int64 dtype.
        rt   )r   rw   r   rn   rn   ro   r   <  s   zDatetimeLikeArrayMixin.asi8r   )na_repdate_formatr   str | floatnpt.NDArray[np.object_]c                C  r   )z|
        Helper method for astype when converting to strings.

        Returns
        -------
        ndarray[str]
        r   )r{   r   r   rn   rn   ro   _format_native_typesL  s   
z+DatetimeLikeArrayMixin._format_native_typesboxedc                 C  s   dj S )Nz'{}')format)r{   r   rn   rn   ro   
_formatterX  s   z!DatetimeLikeArrayMixin._formatterNpDtype | Nonec                 C  s    t |rtjt| tdS | jS )Nrv   )r@   nprZ   listobjectr   r{   rv   rn   rn   ro   	__array___  s   z DatetimeLikeArrayMixin.__array__itemr/   c                 C     d S rl   rn   r{   r   rn   rn   ro   __getitem__e  r   z"DatetimeLikeArrayMixin.__getitem__(SequenceIndexer | PositionalIndexerTupler0   c                 C  r   rl   rn   r   rn   rn   ro   r   i  s   keyr-   Self | DTScalarOrNaTc                   s:   t dt |}t|r|S t t|}| ||_|S )z
        This getitem defers to the underlying array, which by-definition can
        only handle list-likes, slices, and integer scalars
        zUnion[Self, DTScalarOrNaT])r   superr   r   	is_scalarr0   _get_getitem_freq_freq)r{   r   r   	__class__rn   ro   r   p  s   

c                 C  s   t | jt}|r| j}|S | jdkrd}|S t| |}d}t |tr9| jdur4|jdur4|j| j }|S | j}|S |tu rB| j}|S t	
|rZt|tj}t |trZ| |S |S )z\
        Find the `freq` attribute to assign to the result of a __getitem__ lookup.
        r   N)ru   rv   rF   r   r   r]   slicestepEllipsiscomis_bool_indexerr   maybe_booleans_to_slicerw   r   uint8r   )r{   r   	is_periodr   new_keyrn   rn   ro   r     s.   


	


z(DatetimeLikeArrayMixin._get_getitem_freq,int | Sequence[int] | Sequence[bool] | sliceNaTType | Any | Sequence[Any]c                   s.   t ||| }t || |rd S |   d S rl   )r^   r   __setitem___maybe_clear_freq)r{   r   r   no_opr   rn   ro   r     s
   z"DatetimeLikeArrayMixin.__setitem__c                 C  r   rl   rn   r   rn   rn   ro   r     s   z(DatetimeLikeArrayMixin._maybe_clear_freqTc                   s,  t |}|tkr;| jjdkr"td| } | j}t|| jd| jd}|S | jjdkr/t	| j
ddS | | j | jS t|trHt j||dS t|rP|  S |jd	v rq| j}|tjkritd
| j d| d|ro| }|S |jdv r{| j|ks|jdkrdt| j d| }t|tj| |dS )NMrg   	timestamp)tzboxresomT)r   r   iuzConverting from z to z? is not supported. Do obj.astype('int64').astype(dtype) insteadmMfzCannot cast z
 to dtype r   )rB   r   rv   kindr   r   r   r   _cresor   r   r   ravelreshapeshaperu   rE   r   astyperA   r   r   int64	TypeErrorr   type__name__asarray)r{   rv   r   i8data	convertedr   msgr   rn   ro   r     s@   



zDatetimeLikeArrayMixin.astypec                 C  r   rl   rn   r   rn   rn   ro   rw     r   zDatetimeLikeArrayMixin.viewLiteral['M8[ns]']rg   c                 C  r   rl   rn   r   rn   rn   ro   rw     r   Literal['m8[ns]']ri   c                 C  r   rl   rn   r   rn   rn   ro   rw     r   .r%   c                 C  r   rl   rn   r   rn   rn   ro   rw     r   c                   s   t  |S rl   )r   rw   r   r   rn   ro   rw     s   c              
   C  s  t |trz| |}W n ttfy   t|w t || js$|tu rE| |}z| 	| W |S  t
tfyD } zt||d }~ww t|sMt|t|t| krYtdz| j|dd}| 	| W |S  t
tfy } ztt|dd r{nt||W Y d }~|S d }~ww )NzLengths must matchT)allow_objectrv   )ru   rk   r   
ValueErrorr   r7   r   r   r   r   r   r?   r   _validate_listliker@   getattr)r{   r   errrn   rn   ro   _validate_comparison_value  s>   




z1DatetimeLikeArrayMixin._validate_comparison_value)allow_listlikeunboxr   r   c             
   C  s   t || jrnQt |tr+z| |}W nD ty* } z| ||}t||d}~ww t|| jr4t	}n$t
|rB| ||}t|t || jrN| |}n
| ||}t||s\|S | |S )a  
        Validate that the input value can be cast to our scalar_type.

        Parameters
        ----------
        value : object
        allow_listlike: bool, default False
            When raising an exception, whether the message should say
            listlike inputs are allowed.
        unbox : bool, default True
            Whether to unbox the result before returning.  Note: unbox=False
            skips the setitem compatibility check.

        Returns
        -------
        self._scalar_type or NaT
        N)ru   r   rk   r   r   _validation_error_messager   rI   rv   r   rJ   r   r   )r{   r   r   r   r   r   rn   rn   ro   _validate_scalar+  s,   


z'DatetimeLikeArrayMixin._validate_scalarc                 C  sD   |rd| j j dt|j d}|S d| j j dt|j d}|S )a+  
        Construct an exception message on validation error.

        Some methods allow only scalar inputs, while others allow either scalar
        or listlike.

        Parameters
        ----------
        allow_listlike: bool, default False

        Returns
        -------
        str
        zvalue should be a 'z"', 'NaT', or array of those. Got 'z
' instead.z' or 'NaT'. Got ')r   r   r   )r{   r   r   r   rn   rn   ro   r   f  s   	z0DatetimeLikeArrayMixin._validation_error_messager   c              	   C  sd  t |t| r	|S t |trt|dkrt| jg | jdS t|drS|jtkrSt	|| j
v rSz	t| |}W n ttfyR   |rH| Y S | |d}t|w t|dd}t|}t|dd}t|r}zt| j|| jd}W n	 ty|   Y nw t |jtr|jj| jkr| }t|dd}|rt|jr	 |S t| |js| |d}t||S )Nr   r   rv   Textract_numpy)ru   r   r   r   _from_sequencerv   hasattrr   r   infer_dtyper   r   r   r   r\   pd_arrayr=   rC   
categories_internal_get_valuesr@   r   )r{   r   r   r   rn   rn   ro   r     sD   	z)DatetimeLikeArrayMixin._validate_listlikec                 C  s,   t |r
| |}n| j|ddS | |S )NT)r   )r?   r   r   _unboxr   rn   rn   ro   _validate_setitem_value  s   
z.DatetimeLikeArrayMixin._validate_setitem_value6np.int64 | np.datetime64 | np.timedelta64 | np.ndarrayc                 C  s,   t |r| |}|S | | |j}|S )zZ
        Unbox either a scalar with _unbox_scalar or an instance of our own type.
        )r   r   r   r   r   r   rn   rn   ro   r	    s   


zDatetimeLikeArrayMixin._unboxc                 C  s:   ddl m} t| ||d}||}t|tr| S |jS )Nr   re   )	na_action)pandasrf   rQ   ru   rH   to_numpyrZ   )r{   mapperr  rf   r   rn   rn   ro   map  s   
zDatetimeLikeArrayMixin.mapnpt.NDArray[np.bool_]c              	   C  s4  t |ds
t|}|jjdv rtj| jtdS t|t	| sgg d}|jt
krLtj|dd}||vrL|dkr8nd|v rDt| t
|S tj| jtdS z	t	| |}W n tyf   t| t
| Y S w | jjd	v rxtd
| } || j}z| | W n ttfy   tj| jtd Y S w t| j|jS )z
        Compute boolean array of whether each value is found in the
        passed set of values.

        Parameters
        ----------
        values : set or sequence of values

        Returns
        -------
        ndarray[bool]
        rv   fiucr   )r   timedelta64r   
datetime64dateperiodFskipnastringmixedr   DatetimeArray | TimedeltaArray)r  r   r   rv   r   zerosr   r   ru   r   r   r   r  rP   r   r  r   r   as_unitunitr   r   r   )r{   r   	inferableinferredrn   rn   ro   rP     s8   



zDatetimeLikeArrayMixin.isinc                 C     | j S rl   )_isnanr   rn   rn   ro   rJ     s   zDatetimeLikeArrayMixin.isnac                 C  s
   | j tkS )z-
        return if each value is nan
        )r   r   r   rn   rn   ro   r"       
zDatetimeLikeArrayMixin._isnanc                 C  s   t | j S )zJ
        return if I have any nans; enables various perf speedups
        )r   r"  anyr   rn   rn   ro   _hasna!  s   zDatetimeLikeArrayMixin._hasnar   c                 C  s6   | j r|r
||}|du rtj}t|| j| |S )az  
        Parameters
        ----------
        result : np.ndarray
        fill_value : object, default iNaT
        convert : str, dtype or None

        Returns
        -------
        result : ndarray with values replace by the fill_value

        mask the result if needed, convert to the provided dtype if its not
        None

        This is an internal routine.
        N)r%  r   r   nanputmaskr"  )r{   r   
fill_valuer   rn   rn   ro   _maybe_mask_results(  s   
z*DatetimeLikeArrayMixin._maybe_mask_results
str | Nonec                 C  s   | j du rdS | j jS )a{  
        Return the frequency object as a string if it's set, otherwise None.

        Examples
        --------
        For DatetimeIndex:

        >>> idx = pd.DatetimeIndex(["1/1/2020 10:00:00+00:00"], freq="D")
        >>> idx.freqstr
        'D'

        The frequency can be inferred if there are more than 2 points:

        >>> idx = pd.DatetimeIndex(["2018-01-01", "2018-01-03", "2018-01-05"],
        ...                        freq="infer")
        >>> idx.freqstr
        '2D'

        For PeriodIndex:

        >>> idx = pd.PeriodIndex(["2023-1", "2023-2", "2023-3"], freq="M")
        >>> idx.freqstr
        'M'
        N)r   freqstrr   rn   rn   ro   r+  F  s   
zDatetimeLikeArrayMixin.freqstrc                 C  s0   | j dkrdS zt| W S  ty   Y dS w )ax  
        Tries to return a string representing a frequency generated by infer_freq.

        Returns None if it can't autodetect the frequency.

        Examples
        --------
        For DatetimeIndex:

        >>> idx = pd.DatetimeIndex(["2018-01-01", "2018-01-03", "2018-01-05"])
        >>> idx.inferred_freq
        '2D'

        For TimedeltaIndex:

        >>> tdelta_idx = pd.to_timedelta(["0 days", "10 days", "20 days"])
        >>> tdelta_idx
        TimedeltaIndex(['0 days', '10 days', '20 days'],
                       dtype='timedelta64[ns]', freq=None)
        >>> tdelta_idx.inferred_freq
        '10D'
        r   N)r   rb   
infer_freqr   r   rn   rn   ro   inferred_freqd  s   
z$DatetimeLikeArrayMixin.inferred_freqResolution | Nonec                 C  s4   | j }|d u r	d S zt|W S  ty   Y d S w rl   )r+  r   get_reso_from_freqstrKeyError)r{   r+  rn   rn   ro   _resolution_obj  s   z&DatetimeLikeArrayMixin._resolution_objc                 C  s   | j jS )zO
        Returns day, hour, minute, second, millisecond or microsecond
        )r1  attrnamer   rn   rn   ro   
resolution  s   z!DatetimeLikeArrayMixin.resolutionc                 C     t j| jddd S )NTtimeliker   r   is_monotonicr   r   rn   rn   ro   _is_monotonic_increasing     z/DatetimeLikeArrayMixin._is_monotonic_increasingc                 C  r4  )NTr5  r   r7  r   rn   rn   ro   _is_monotonic_decreasing  r:  z/DatetimeLikeArrayMixin._is_monotonic_decreasingc                 C  s   t t| jd| jkS )NK)r   rR   r   r   sizer   rn   rn   ro   
_is_unique  s   z!DatetimeLikeArrayMixin._is_uniquec           
      C  s  | j dkrt|dd | jkr||  | | jS z| |}W n ty1   t| || Y S w t|dd }t|rKt	
|t| t|}|S |tu rh|tju r^tj| jtd}|S tj| jtd}|S t| jtstt| } | j|jkrt|t| sz
|j| jdd}W n  ty   t|j }t!| j"|| Y S w |j"}t!| j"||S | #|}|| j"$d|$d}t%|}| j&|B }|' r|tju }	t(|||	 |S )Nr   r   rv   r   Fround_okrt   ))r   r   r   r   r   r   r7   r`   r@   rN   comp_method_OBJECT_ARRAYr   r   r   r   r   operatorneonesr   r  ru   rv   rF   r   TimelikeOpsr   r   r  r  r   rZ   asm8r#   r   r	  rw   rJ   r"  r$  r'  )
r{   r   rm   rv   r   	other_arr
other_valso_maskmask
nat_resultrn   rn   ro   _cmp_method  sR   




z"DatetimeLikeArrayMixin._cmp_method__pow____rpow____mul____rmul____truediv____rtruediv____floordiv____rfloordiv____mod____rmod__
__divmod____rdivmod__@tuple[int | npt.NDArray[np.int64], None | npt.NDArray[np.bool_]]c                 C  sP   t |tr|j}d}||fS t |ttfr|j}d}||fS |j}|j}||fS )zR
        Get the int64 values and b_mask to pass to checked_add_with_arr.
        N)ru   r   ordinalr   r   ry   r"  r   )r{   r   i8valuesrJ  rn   rn   ro   _get_i8_values_and_mask  s   
z.DatetimeLikeArrayMixin._get_i8_values_and_maskc                 C  s6   t | jtr	| jS t|sdS t | jtr| jS dS )zP
        Check if we can preserve self.freq in addition or subtraction.
        N)ru   rv   rF   r   r   r   r   r   rn   rn   ro   _get_arithmetic_result_freq   s   
z2DatetimeLikeArrayMixin._get_arithmetic_result_freqc           
      C  s&  t | jdstdt| j dt|j td| } ddlm} ddl	m
} |tus.J t|rI| jt d| j d	 }|j||jd
S t|}| |\} }td| } | |\}}t| j|| j|d}|d| j d	}||j| jd}|d| j d	}| |}	|j|||	dS )Nr   cannot add  and ri   r   rg   )tz_to_dtypezM8[]r   arr_maskb_maskr   r  rv   r   )r   is_np_dtyperv   r   r   r   r   pandas.core.arraysrg   pandas.core.arrays.datetimesra  r   rJ   r   to_datetime64r   r  _simple_newr   _ensure_matching_resosr\  rO   r   r"  rw   r   r]  )
r{   r   rg   ra  r   other_i8rI  
res_valuesrv   new_freqrn   rn   ro   _add_datetimelike_scalar  s.   


z/DatetimeLikeArrayMixin._add_datetimelike_scalarc                 C  s6   t | jdstdt| j dt|j ||  S )Nr   r^  r_  )r   rh  rv   r   r   r   r   rn   rn   ro   _add_datetime_arraylike4  s
   z.DatetimeLikeArrayMixin._add_datetime_arraylikedatetime | np.datetime64c                 C  sZ   | j jdkrtdt| j td| } t|r| t S t|}| 	|\} }| 
|S )Nr   "cannot subtract a datelike from a rg   )rv   r   r   r   r   r   rJ   r   r   rm  _sub_datetimelike)r{   r   tsrn   rn   ro   _sub_datetimelike_scalar>  s   

z/DatetimeLikeArrayMixin._sub_datetimelike_scalarc                 C  sZ   | j jdkrtdt| j t| t|krtdtd| } | |\} }| 	|S )Nr   rt  $cannot add indices of unequal lengthrg   )
rv   r   r   r   r   r   r   r   rm  ru  r   rn   rn   ro   _sub_datetime_arraylikeQ  s   

z.DatetimeLikeArrayMixin._sub_datetime_arraylikeTimestamp | DatetimeArrayc           
   
   C  s   t d| } ddlm} z| | W n ty- } zt|dd}t|||d }~ww | |\}}t	| j
| | j|d}|d| j d}| |}	t d	|	}	|j||j|	d
S )Nrg   r   ri   comparesubtractrc  timedelta64[rb  zTick | Nonerg  )r   ri  ri   _assert_tzawareness_compatr   rk   replacer   r\  rO   r   r"  rw   r  r]  rl  rv   )
r{   r   ri   r   new_messagern  rI  ro  res_m8rp  rn   rn   ro   ru  ^  s"   


z(DatetimeLikeArrayMixin._sub_datetimeliker   rh   c                 C  s\   t | jdstdt| j ddlm} t	|j
| j}t|j}|||d}||  S )Nr   zcannot add Period to a r   )rh   r   )r   rh  rv   r   r   r   pandas.core.arrays.periodrh   r   broadcast_torZ  r   rF   r   )r{   r   rh   i8valsrv   parrrn   rn   ro   _add_periodt  s   
z"DatetimeLikeArrayMixin._add_periodc                 C  r   rl   r   )r{   offsetrn   rn   ro   _add_offset  s   z"DatetimeLikeArrayMixin._add_offsetc                 C  sj   t |r tj| jdd| jj}|t t	| j
|| jdS td| } t|}| |\} }| |S )zk
        Add a delta of a timedeltalike

        Returns
        -------
        Same type as self
        rt   r   r  )rJ   r   emptyr   rw   r   rv   fillr   r   rl  r   r   rm  _add_timedeltalike)r{   r   
new_valuesrn   rn   ro   _add_timedeltalike_scalar  s   


z0DatetimeLikeArrayMixin._add_timedeltalike_scalarc                 C  s:   t | t |krtdtd| } | |\} }| |S )zl
        Add a delta of a TimedeltaIndex

        Returns
        -------
        Same type as self
        rx  r  )r   r   r   rm  r  r   rn   rn   ro   _add_timedelta_arraylike  s
   


z/DatetimeLikeArrayMixin._add_timedelta_arraylikeTimedelta | TimedeltaArrayc                 C  sZ   t d| } | |\}}t| j|| j|d}|| jj}| |}t	| j
|| j|dS )Nr  rc  rg  )r   r\  rO   r   r"  rw   r   rv   r]  r   rl  )r{   r   rn  rI  r  ro  rp  rn   rn   ro   r    s   

z)DatetimeLikeArrayMixin._add_timedeltalikec                 C  sv   t | jtrtdt| j dttj td| } tj	| j
tjd}|t || jj}t| j|| jddS )z$
        Add pd.NaT to self
        zCannot add r_  zTimedeltaArray | DatetimeArrayr   Nrg  )ru   rv   rF   r   r   r   r   r   r   r  r   r   r  r   rw   r   rl  r{   r   rn   rn   ro   _add_nat  s   

zDatetimeLikeArrayMixin._add_natc                 C  sP   t j| jt jd}|t | jjdv r#td| } |	d| j
 dS |	dS )z+
        Subtract pd.NaT from self
        r   r   zDatetimeArray| TimedeltaArrayr~  rb  ztimedelta64[ns])r   r  r   r   r  r   rv   r   r   rw   r  r  rn   rn   ro   _sub_nat  s   


zDatetimeLikeArrayMixin._sub_natPeriod | PeriodArrayc                   s   t  jtstdt|j dt j td   |  |\}}t	 j
|  j|d}t fdd|D }|d u rF j}n j|B }t||< |S )Ncannot subtract  from rh   rc  c                   s   g | ]} j j| qS rn   )r   baser   r   r   rn   ro   
<listcomp>      z:DatetimeLikeArrayMixin._sub_periodlike.<locals>.<listcomp>)ru   rv   rF   r   r   r   r   r   r\  rO   r   r"  r   rZ   r   )r{   r   rn  rI  new_i8_datanew_datarJ  rn   r   ro   _sub_periodlike  s    


z&DatetimeLikeArrayMixin._sub_periodlikec                 C  s   |t jt jfv s
J t|dkr| jdkr|| |d S tjdt| j dt	t
 d | j|jks:J | j|jf|| dt|}|S )aZ  
        Add or subtract array-like of DateOffset objects

        Parameters
        ----------
        other : np.ndarray[object]
        op : {operator.add, operator.sub}

        Returns
        -------
        np.ndarray[object]
            Except in fastpath case with length 1 where we operate on the
            contained scalar.
        r   r   z)Adding/subtracting object-dtype array to z not vectorized.
stacklevelO)rB  addsubr   r   warningswarnr   r   r8   r<   r   r   r   r   )r{   r   rm   ro  rn   rn   ro   _addsub_object_array  s   z+DatetimeLikeArrayMixin._addsub_object_arrayr  namer  c                K  sV   |dvrt d| dt|  tt|}||  fd|i|}t| j|| jdS )N>   cummaxcumminzAccumulation z not supported for r  r   )r   r   r   rS   r   rl  rv   )r{   r  r  r}   rm   r   rn   rn   ro   _accumulate'  s
   
z"DatetimeLikeArrayMixin._accumulate__add__c                 C  s  t |dd }t|}|tu r|  }nt|tttjfr"| 	|}nt|t
r-| |}nt|ttjfr;| |}n{t|trMt| jdrM| |}nit|rmt| jts\t| td| }|||jj tj}nIt|dry| |}n=t|r| |tj}n1t|dst|tr|  |S t!|rt| jtst| td| }|||jj tj}nt"S t|tj#rt|jdrddl$m%} ||S |S )Nrv   r   rh   r   r   r{  )&r   r[   r   r  ru   r   r   r   r  r  r   r  r   r  rq  r   r   rh  rv   r  
is_integerrF   r$   r   _addsub_int_array_or_scalar_nrB  r  r  r@   r  rD   rr  r>   NotImplementedndarrayri  ri   r{   r   other_dtyper   objri   rn   rn   ro   r  0  sF   





zDatetimeLikeArrayMixin.__add__c                 C  s
   |  |S rl   )r  r   rn   rn   ro   __radd__h  s   
zDatetimeLikeArrayMixin.__radd____sub__c                 C  s  t |dd }t|}|tu r|  }nt|tttjfr#| 	| }nt|t
r/| | }nt|ttjfr=| |}nt|r]t| jtsLt| td| }|||jj tj}nat|trh| |}nVt|dru| | }nIt|r| |tj}n=t|dst|tr|  |}n,t|tr| |}n!t!|rt| jtst| td| }|||jj tj}nt"S t|tj#rt|jdrddl$m%} ||S |S )Nrv   rh   r   r   r   r{  )&r   r[   r   r  ru   r   r   r   r  r  r   r  r   r  rw  r   r  rv   rF   r$   r   r  r  rB  r  r   r  rh  r  r@   r  rD   ry  r>   r  r  ri  ri   r  rn   rn   ro   r  l  sJ   






zDatetimeLikeArrayMixin.__sub__c                 C  s
  t |dd }t|dpt|t}|r8t| jdr8t|r%t||  S t|ts4ddl	m
} ||}||  S | jjdkrUt|drU|sUtdt| j dt|j t| jtrot|drotdt| j d|j t| jdrtd| } |  | S | |  S )	Nrv   r   r   r   r`  r  r  ri   )r   r   rh  ru   rD   rv   r   r   r   ri  rg   r   r  r   r   r   rF   r   )r{   r   r  other_is_dt64rg   rn   rn   ro   __rsub__  s*   




zDatetimeLikeArrayMixin.__rsub__c                 C  s4   | | }|d d  | d d < t | jts|j| _| S rl   ru   rv   rF   r   r   r{   r   r   rn   rn   ro   __iadd__  
   zDatetimeLikeArrayMixin.__iadd__c                 C  s4   | | }|d d  | d d < t | jts|j| _| S rl   r  r  rn   rn   ro   __isub__  r  zDatetimeLikeArrayMixin.__isub__qsnpt.NDArray[np.float64]interpolationc                   s   t  j||dS )N)r  r  )r   	_quantile)r{   r  r  r   rn   ro   r    s   z DatetimeLikeArrayMixin._quantileaxisr  r  AxisInt | Nonec                K  8   t d| t || j tj| j||d}| ||S )a  
        Return the minimum value of the Array or minimum along
        an axis.

        See Also
        --------
        numpy.ndarray.min
        Index.min : Return the minimum value in an Index.
        Series.min : Return the minimum value in a Series.
        rn   r  )nvvalidate_minvalidate_minmax_axisr   rM   nanminr   _wrap_reduction_resultr{   r  r  r}   r   rn   rn   ro   min     zDatetimeLikeArrayMixin.minc                K  r  )a  
        Return the maximum value of the Array or maximum along
        an axis.

        See Also
        --------
        numpy.ndarray.max
        Index.max : Return the maximum value in an Index.
        Series.max : Return the maximum value in a Series.
        rn   r  )r  validate_maxr  r   rM   nanmaxr   r  r  rn   rn   ro   max  r  zDatetimeLikeArrayMixin.maxr   )r  r  c                C  sF   t | jtrtdt| j dtj| j||| 	 d}| 
||S )a  
        Return the mean value of the Array.

        Parameters
        ----------
        skipna : bool, default True
            Whether to ignore any NaT elements.
        axis : int, optional, default 0

        Returns
        -------
        scalar
            Timestamp or Timedelta.

        See Also
        --------
        numpy.ndarray.mean : Returns the average of array elements along a given axis.
        Series.mean : Return the mean value in a Series.

        Notes
        -----
        mean is only defined for Datetime and Timedelta dtypes, not for Period.

        Examples
        --------
        For :class:`pandas.DatetimeIndex`:

        >>> idx = pd.date_range('2001-01-01 00:00', periods=3)
        >>> idx
        DatetimeIndex(['2001-01-01', '2001-01-02', '2001-01-03'],
                      dtype='datetime64[ns]', freq='D')
        >>> idx.mean()
        Timestamp('2001-01-02 00:00:00')

        For :class:`pandas.TimedeltaIndex`:

        >>> tdelta_idx = pd.to_timedelta([1, 2, 3], unit='D')
        >>> tdelta_idx
        TimedeltaIndex(['1 days', '2 days', '3 days'],
                        dtype='timedelta64[ns]', freq=None)
        >>> tdelta_idx.mean()
        Timedelta('2 days 00:00:00')
        zmean is not implemented for zX since the meaning is ambiguous.  An alternative is obj.to_timestamp(how='start').mean()r  r  rJ  )ru   rv   rF   r   r   r   rM   nanmeanr   rJ   r  )r{   r  r  r   rn   rn   ro   mean  s   ,zDatetimeLikeArrayMixin.meanc                K  sH   t d| |d urt|| jkrtdtj| j||d}| ||S )Nrn   z abs(axis) must be less than ndimr  )	r  validate_medianabsr   r   rM   	nanmedianr   r  r  rn   rn   ro   median@  s
   zDatetimeLikeArrayMixin.mediandropnac                 C  sH   d }|r|   }tj| d|d}|| jj}ttj|}| 	|S )Nrt   )rJ  )
rJ   rK   moderw   r   rv   r   r   r  rz   )r{   r  rJ  i8modesnpmodesrn   rn   ro   _modeJ  s   
zDatetimeLikeArrayMixin._modehowhas_dropped_na	min_countintngroupsidsnpt.NDArray[np.intp]c                K  s  | j }|jdkr)|dv rtd| d|dv r(tjd| d| dtt d	 n2t|trO|dv r:td
| d|dv rNtjd| d| dtt d	 n|dv r[td| d| j	
d}ddlm}	 |	|}
|	||
|d}|j|f|||d d|}|j|jv r|S |j dksJ |dv rddlm} t| j trtdtd| } d| j d}|
|}||S |
| j	j }| |S )Nr   )sumprodcumsumcumprodvarskewz!datetime64 type does not support z operations)r$  all'zh' with datetime64 dtypes is deprecated and will raise in a future version. Use (obj != pd.Timestamp(0)).z() instead.r  zPeriod type does not support ze' with PeriodDtype is deprecated and will raise in a future version. Use (obj != pd.Period(0, freq)).)r  r  r  r  z"timedelta64 type does not support rs   r   )WrappedCythonOp)r  r   r  )r  r  comp_idsrJ  )stdsemr{  z-'std' and 'sem' are not valid for PeriodDtyper  zm8[rb  )rv   r   r   r  r  FutureWarningr<   ru   rF   r   rw   pandas.core.groupby.opsr  get_kind_from_how_cython_op_ndim_compatr  cast_blocklistri  ri   r   r  rz   )r{   r  r  r  r  r  r}   rv   npvaluesr  r   rm   ro  ri   	new_dtypern   rn   ro   _groupby_opW  sl   



	


z"DatetimeLikeArrayMixin._groupby_op)rr   r   )NNF)rv   r   r   r   rr   r   )rr   r   )r   rk   rr   r   )r   r   rr   r   )r   r   rr   r   rr   r   )rr   rc   )rr   r   )r   r   rr   r   )F)r   r   rl   )rv   r   rr   r   )r   r/   rr   r   )r   r   rr   r0   )r   r-   rr   r   )rr   r   )r   r   r   r   rr   r   rr   r   )T)r   r   rr   r0   )rv   r   rr   rg   )rv   r   rr   ri   ).)rv   r   rr   r%   )r   r   r   r   )r   r   rr   rk   )r   r   )rr   r  )rr   r  )r   r   rr   r   )rr   r*  )rr   r.  rr   rk   )rr   rY  )rr   rg   )r   rg   rr   rg   )r   rs  rr   ri   )r   rg   rr   ri   )r   rz  rr   ri   )r   r   rr   rh   )r   ri   )r   r  )r   r  rr   r   )r   r   )r  rk   r  r   rr   r0   )r  r  r  rk   rr   r0   )r  r  r  r   )r  r   r  r  )r  r   )
r  rk   r  r   r  r  r  r  r  r  )`r   
__module____qualname____doc____annotations__r;   r   r   propertyr   r   r   r   rx   r   r   r   r   r   r   r   r   r   r   r   r   rw   r   r   r   r   r
  r   r	  rV   r  rP   rJ   r"  r%  r   r)  r+  r-  r1  r3  r9  r;  r>  rL  rp   rM  rN  rO  rP  rQ  rR  rS  rT  rU  rV  rW  rX  r\  r]  rq  rr  rw  ry  ru  r  r  r  r  r  r  r  r  r  r  r_   r  r  r  r  r  r  r   r  r  r  r  r  r  r  __classcell__rn   rn   r   ro   r      s  
 





3	(;4<	
9#	

#	
7
7"	9	r   c                   @  s$   e Zd ZdZeddddd	Zd
S )DatelikeOpszK
    Common ops for DatetimeIndex/PeriodIndex, but not TimedeltaIndex.
    zNhttps://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)URLr   rk   rr   r   c                 C  s   | j |tjd}|jtddS )a  
        Convert to Index using specified date_format.

        Return an Index of formatted strings specified by date_format, which
        supports the same string format as the python standard library. Details
        of the string format can be found in `python string format
        doc <%(URL)s>`__.

        Formats supported by the C `strftime` API but not by the python string format
        doc (such as `"%%R"`, `"%%r"`) are not officially supported and should be
        preferably replaced with their supported equivalents (such as `"%%H:%%M"`,
        `"%%I:%%M:%%S %%p"`).

        Note that `PeriodIndex` support additional directives, detailed in
        `Period.strftime`.

        Parameters
        ----------
        date_format : str
            Date format string (e.g. "%%Y-%%m-%%d").

        Returns
        -------
        ndarray[object]
            NumPy ndarray of formatted strings.

        See Also
        --------
        to_datetime : Convert the given argument to datetime.
        DatetimeIndex.normalize : Return DatetimeIndex with times to midnight.
        DatetimeIndex.round : Round the DatetimeIndex to the specified freq.
        DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq.
        Timestamp.strftime : Format a single Timestamp.
        Period.strftime : Format a single Period.

        Examples
        --------
        >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"),
        ...                     periods=3, freq='s')
        >>> rng.strftime('%%B %%d, %%Y, %%r')
        Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM',
               'March 10, 2018, 09:00:02 AM'],
              dtype='object')
        )r   r   Fr   )r   r   r&  r   r   )r{   r   r   rn   rn   ro   strftime  s   1zDatelikeOps.strftimeN)r   rk   rr   r   )r   r  r  r  r:   r  rn   rn   rn   ro   r     s    r   aM	  
    Perform {op} operation on the data to the specified `freq`.

    Parameters
    ----------
    freq : str or Offset
        The frequency level to {op} the index to. Must be a fixed
        frequency like 'S' (second) not 'ME' (month end). See
        :ref:`frequency aliases <timeseries.offset_aliases>` for
        a list of possible `freq` values.
    ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise'
        Only relevant for DatetimeIndex:

        - 'infer' will attempt to infer fall dst-transition hours based on
          order
        - bool-ndarray where True signifies a DST time, False designates
          a non-DST time (note that this flag is only applicable for
          ambiguous times)
        - 'NaT' will return NaT where there are ambiguous times
        - 'raise' will raise an AmbiguousTimeError if there are ambiguous
          times.

    nonexistent : 'shift_forward', 'shift_backward', 'NaT', timedelta, default 'raise'
        A nonexistent time does not exist in a particular timezone
        where clocks moved forward due to DST.

        - 'shift_forward' will shift the nonexistent time forward to the
          closest existing time
        - 'shift_backward' will shift the nonexistent time backward to the
          closest existing time
        - 'NaT' will return NaT where there are nonexistent times
        - timedelta objects will shift nonexistent times by the timedelta
        - 'raise' will raise an NonExistentTimeError if there are
          nonexistent times.

    Returns
    -------
    DatetimeIndex, TimedeltaIndex, or Series
        Index of the same type for a DatetimeIndex or TimedeltaIndex,
        or a Series with the same index for a Series.

    Raises
    ------
    ValueError if the `freq` cannot be converted.

    Notes
    -----
    If the timestamps have a timezone, {op}ing will take place relative to the
    local ("wall") time and re-localized to the same timezone. When {op}ing
    near daylight savings time, use ``nonexistent`` and ``ambiguous`` to
    control the re-localization behavior.

    Examples
    --------
    **DatetimeIndex**

    >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min')
    >>> rng
    DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00',
                   '2018-01-01 12:01:00'],
                  dtype='datetime64[ns]', freq='T')
    a  >>> rng.round('H')
    DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
                   '2018-01-01 12:00:00'],
                  dtype='datetime64[ns]', freq=None)

    **Series**

    >>> pd.Series(rng).dt.round("H")
    0   2018-01-01 12:00:00
    1   2018-01-01 12:00:00
    2   2018-01-01 12:00:00
    dtype: datetime64[ns]

    When rounding near a daylight savings time transition, use ``ambiguous`` or
    ``nonexistent`` to control how the timestamp should be re-localized.

    >>> rng_tz = pd.DatetimeIndex(["2021-10-31 03:30:00"], tz="Europe/Amsterdam")

    >>> rng_tz.floor("2H", ambiguous=False)
    DatetimeIndex(['2021-10-31 02:00:00+01:00'],
                  dtype='datetime64[ns, Europe/Amsterdam]', freq=None)

    >>> rng_tz.floor("2H", ambiguous=True)
    DatetimeIndex(['2021-10-31 02:00:00+02:00'],
                  dtype='datetime64[ns, Europe/Amsterdam]', freq=None)
    a  >>> rng.floor('H')
    DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00',
                   '2018-01-01 12:00:00'],
                  dtype='datetime64[ns]', freq=None)

    **Series**

    >>> pd.Series(rng).dt.floor("H")
    0   2018-01-01 11:00:00
    1   2018-01-01 12:00:00
    2   2018-01-01 12:00:00
    dtype: datetime64[ns]

    When rounding near a daylight savings time transition, use ``ambiguous`` or
    ``nonexistent`` to control how the timestamp should be re-localized.

    >>> rng_tz = pd.DatetimeIndex(["2021-10-31 03:30:00"], tz="Europe/Amsterdam")

    >>> rng_tz.floor("2H", ambiguous=False)
    DatetimeIndex(['2021-10-31 02:00:00+01:00'],
                 dtype='datetime64[ns, Europe/Amsterdam]', freq=None)

    >>> rng_tz.floor("2H", ambiguous=True)
    DatetimeIndex(['2021-10-31 02:00:00+02:00'],
                  dtype='datetime64[ns, Europe/Amsterdam]', freq=None)
    a  >>> rng.ceil('H')
    DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00',
                   '2018-01-01 13:00:00'],
                  dtype='datetime64[ns]', freq=None)

    **Series**

    >>> pd.Series(rng).dt.ceil("H")
    0   2018-01-01 12:00:00
    1   2018-01-01 12:00:00
    2   2018-01-01 13:00:00
    dtype: datetime64[ns]

    When rounding near a daylight savings time transition, use ``ambiguous`` or
    ``nonexistent`` to control how the timestamp should be re-localized.

    >>> rng_tz = pd.DatetimeIndex(["2021-10-31 01:30:00"], tz="Europe/Amsterdam")

    >>> rng_tz.ceil("H", ambiguous=False)
    DatetimeIndex(['2021-10-31 02:00:00+01:00'],
                  dtype='datetime64[ns, Europe/Amsterdam]', freq=None)

    >>> rng_tz.ceil("H", ambiguous=True)
    DatetimeIndex(['2021-10-31 02:00:00+02:00'],
                  dtype='datetime64[ns, Europe/Amsterdam]', freq=None)
    c                      s  e Zd ZU dZded< dejdfdZd
dZedd Z	e
dd Zejd[ddZedd Zed\ddZed]ddZed^ddZd_ddZdd  Zd` fd$d%Zd&d' Zeee jd(d)	*	*dadbd/d0Zeee jd1d)	*	*dadbd2d3Zeee jd4d)	*	*dadbd5d6Zdd7d8dcd<d=Zdd7d8dcd>d?Z d[d@dAZ!d\dBdCZ"dd fdEdFZ#	7	dedf fdIdJZ$e	Kdgdh fdOdPZ%didj fdSdTZ&dkdXdYZ'  Z(S )lrE  zK
    Common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex.
    znp.dtype_default_dtypeNFr   r   rr   r   c                 C  s  t |dd}t|tr|jdtd}t|dd }|d u }|tjur#|nd }t|t| rh|r/n|d u r7|j	}n|rI|j	rIt
|}t||j	d\}}|d urat|}||jkratd| d|j |j}|j}n|d u rt|tjr||jjd	v r||j}n| j}t|tjstd
t|j dt| j d|jdvrtd|jdkr|| j}| ||}|dkrtdt| j d|r| }|rt
|}|jjdkrt|tstdtj| ||d || _|d u r|d urt| | | d S d S d S )NTr  r   na_valuer   Fzdtype=z does not match data dtype MmzUnexpected type 'z'. 'values' must be a z6, ndarray, or Series or Index containing one of those.)r      z.Only 1-dimensional input arrays are supported.rt   inferz#Frequency inference not allowed in z$.__init__. Use 'pd.array()' instead.r   (TimedeltaArray/Index freq must be a Tick)r   rv   )r\   ru   rY   r  r   r   r   
no_defaultr   r   r    validate_inferred_freqrB   rv   r   r   r   r  r   r  r   r   r   rw   _validate_dtyper   r   r   r   r   _validate_frequency)r{   r   rv   r   r   r-  explicit_none_rn   rn   ro   r   y  sh   




zTimelikeOps.__init__c                 C  r   rl   r   )clsr   rv   rn   rn   ro   r       zTimelikeOps._validate_dtypec                 C  r!  )zK
        Return the frequency object if it is set, otherwise None.
        r   r   rn   rn   ro   r     s   zTimelikeOps.freqc                 C  sV   |d ur&t |}| | | | jjdkrt|tstd| jdkr&td|| _	d S )Nr   r	  r   zCannot set freq with ndim > 1)
r    r  rv   r   ru   r   r   r   r   r   r   rn   rn   ro   r     s   

c              
   K  s   |j }|jdks||jkrdS z | jd|d dt|||jd|}t|j|js-t	W dS  t	yO } zdt
|v r?|t	d| d|j |d}~ww )am  
        Validate that a frequency is compatible with the values of a given
        Datetime Array/Index or Timedelta Array/Index

        Parameters
        ----------
        index : DatetimeIndex or TimedeltaIndex
            The index on which to determine if the given frequency is valid
        freq : DateOffset
            The frequency to validate
        r   N)startendperiodsr   r  z	non-fixedInferred frequency 9 from passed values does not conform to passed frequency rn   )r-  r=  r+  _generate_ranger   r  r   array_equalr   r   rk   )r  indexr   r}   r   on_freqr   rn   rn   ro   r    s8   zTimelikeOps._validate_frequencyr0   c                 O  r   rl   r   )r  r  r  r  r   r|   r}   rn   rn   ro   r    r  zTimelikeOps._generate_ranger  c                 C  s   t | jjS rl   )r   r   rv   r   rn   rn   ro   r     s   zTimelikeOps._cresork   c                 C  s
   t | jS rl   )dtype_to_unitrv   r   rn   rn   ro   r    r#  zTimelikeOps.unitr  c                 C  s~   |dvrt dt| jj d| d}t| j|dd}t| jtjr(|j}ntd| j}t	||d}t
| j||| jd	S )
N)smsusnsz)Supported units are 's', 'ms', 'us', 'ns'z8[rb  Tr?  rg   rf  rg  )r   r   rv   r   r   r   ru   r   r   rD   r   rl  r   )r{   r  rv   r  r  r   rn   rn   ro   r    s   zTimelikeOps.as_unitc                 C  s@   | j |j kr| j |j k r| |j} | |fS || j}| |fS rl   )r   r  r  r   rn   rn   ro   rm  ,  s   z"TimelikeOps._ensure_matching_resosufuncnp.ufuncmethodc                   s`   |t jt jt jfv r"t|dkr"|d | u r"t||| jfi |S t j||g|R i |S )Nr   r   )	r   isnanisinfisfiniter   r   r   r   __array_ufunc__)r{   r!  r#  inputsr}   r   rn   ro   r'  7  s
   zTimelikeOps.__array_ufunc__c                 C  s   t | jtr!td| } | d }|||||}|j| j||dS | d}ttj	|}t
|}|j t|| j}	|	dkrA|  S t|||	}
| j|
td}|| jj}| j|| jdS )Nrg   )	ambiguousnonexistentrt   r   r(  r   )ru   rv   rD   r   tz_localize_roundr   rw   r   r  r    nanosr   r   r   r"   r)  r   r   rl  )r{   r   r  r)  r*  naiver   r   r  r.  	result_i8rn   rn   ro   r-  B  s$   


zTimelikeOps._roundround)rm   raiser)  r2   r*  r3   c                 C     |  |tj||S rl   )r-  r!   NEAREST_HALF_EVENr{   r   r)  r*  rn   rn   ro   r1  Z     zTimelikeOps.roundfloorc                 C  r3  rl   )r-  r!   MINUS_INFTYr5  rn   rn   ro   r7  c  r6  zTimelikeOps.floorceilc                 C  r3  rl   )r-  r!   
PLUS_INFTYr5  rn   rn   ro   r9  l  r6  zTimelikeOps.ceilTr  r  r  r  c                C     t j| j|||  dS Nr  )rM   nananyr   rJ   r{   r  r  rn   rn   ro   r$  x  s   zTimelikeOps.anyc                C  r;  r<  )rM   nanallr   rJ   r>  rn   rn   ro   r  |  s   zTimelikeOps.allc                 C  s
   d | _ d S rl   r  r   rn   rn   ro   r     s   
zTimelikeOps._maybe_clear_freqc                 C  sh   |du rn&t | dkr t|tr | jjdkrt|tstdn|dks&J t| j}| 	 }||_
|S )z
        Helper to get a view on the same data, with a new freq.

        Parameters
        ----------
        freq : DateOffset, None, or "infer"

        Returns
        -------
        Same type as self
        Nr   r   r	  r  )r   ru   r   rv   r   r   r   r    r-  rw   r   )r{   r   r~   rn   rn   ro   
_with_freq  s   
zTimelikeOps._with_freqr   c                   s   t | jtjr
| jS t  S rl   )ru   rv   r   r   r   _values_for_jsonr   r   rn   ro   rA    s   
zTimelikeOps._values_for_jsonuse_na_sentinelsortc                   s   | j d ur-tjt| tjd}|  }|r)| j jdk r)|d d d }|d d d }||fS |r:tdt| j	 dt
 j|dS )Nr   r   zThe 'sort' keyword in zu.factorize is ignored unless arr.freq is not None. To factorize with sort, call pd.factorize(obj, sort=True) instead.)rB  )r   r   aranger   intpr   r   NotImplementedErrorr   r   r   	factorize)r{   rB  rC  codesuniquesr   rn   ro   rH    s   
zTimelikeOps.factorizer   	to_concatSequence[Self]r&   c                   s   t  ||}|d  |dkrDdd |D } jd urDt fdd|D rDt|d d |dd  }t fdd|D rD j}||_|S )	Nr   c                 S  s   g | ]}t |r|qS rn   )r   r  rn   rn   ro   r    r  z1TimelikeOps._concat_same_type.<locals>.<listcomp>c                 3  s    | ]	}|j  j kV  qd S rl   r   r  r  rn   ro   r     s    z0TimelikeOps._concat_same_type.<locals>.<genexpr>rD  r   c                 3  s.    | ]}|d  d  j  |d d  kV  qdS )r   rD  r   NrM  )r   pairrN  rn   ro   r     s   , )r   _concat_same_typer   r  zipr   )r  rK  r  new_objpairsrp  r   rN  ro   rP    s    zTimelikeOps._concat_same_typeCorderc                   s   t  j|d}| j|_|S )N)rU  )r   r   r   r   )r{   rU  rR  r   rn   ro   r     s   zTimelikeOps.copyr+   r  rf   c          
   	   K  s^   |dkrt |s| j}	n| j }	tj|	f||||||d| |s%| S t| j|	| jdS )z2
        See NDFrame.interpolate.__doc__.
        linear)r#  r  r  limitlimit_direction
limit_arear   )rG  r   r   rL   interpolate_2d_inplacer   rl  rv   )
r{   r#  r  r  rW  rX  rY  r   r}   out_datarn   rn   ro   interpolate  s(   

zTimelikeOps.interpolate)r   r   rr   r   r  r  )rr   r  r  )r  rk   rr   r0   )r!  r"  r#  rk   )r2  r2  )r)  r2   r*  r3   rr   r0   )r  r  r  r   rr   r   r  )TF)rB  r   rC  r   )r   )rK  rL  r  r&   rr   r0   )rT  )rU  rk   rr   r0   )
r#  r+   r  r  r  rf   r   r   rr   r0   ))r   r  r  r  r  r   r
  r   classmethodr  r  r   setterr  r  r;   r   r  r  rm  r'  r-  r9   
_round_doc_round_exampler   r1  _floor_exampler7  _ceil_exampler9  r$  r  r   r@  rA  rH  rP  r   r\  r  rn   rn   r   ro   rE  r  s`   
 J


*


 rE  r   r   cls_namec                 C  s  t | dst| ttfst| dkrt| } t| } d}nt| tr,td| dt	| dd} t| t
sBt| trO| jjdv rO| jd	td
} d}| |fS t| trb|  } |  } d}| |fS t| tjtfsst| } | |fS t| tr| jj| jtdj} d}| |fS )Nrv   r   FzCannot create a z from a MultiIndex.Tr  r   r   r  r+  )r  ru   r   tupler   r   r   rH   r   r\   rY   rW   rv   r   r  r   _maybe_convert_datelike_arrayr  rX   rG   r  takerI  r   _values)r   r   rc  rn   rn   ro   !ensure_arraylike_for_datetimelike	  s6   





	
rh  r  r   c                 C  r   rl   rn   r  rn   rn   ro   validate_periods0	  r   rj  int | floatr  c                 C  r   rl   rn   ri  rn   rn   ro   rj  5	  r   int | float | None
int | Nonec                 C  s:   | durt | rt| } | S t | std|  | S )a9  
    If a `periods` argument is passed to the Datetime/Timedelta Array/Index
    constructor, cast it to an integer.

    Parameters
    ----------
    periods : None, float, int

    Returns
    -------
    periods : None or int

    Raises
    ------
    TypeError
        if periods is None, float, or int
    Nzperiods must be a number, got )r   is_floatr  r  r   ri  rn   rn   ro   rj  :	  s   

tuple[BaseOffset | None, bool]c                 C  sF   |dur| dur| |krt d| d| j | du r|} d}| |fS )a  
    If the user passes a freq and another freq is inferred from passed data,
    require that they match.

    Parameters
    ----------
    freq : DateOffset or None
    inferred_freq : DateOffset or None
    freq_infer : bool

    Returns
    -------
    freq : DateOffset or None
    freq_infer : bool

    Notes
    -----
    We assume at this point that `maybe_infer_freq` has been called, so
    `freq` is either a DateOffset object or None.
    Nr  r  F)r   r+  )r   r-  
freq_inferrn   rn   ro   r  T	  s   r  c                 C  s6   d}t | ts| dkrt| } | |fS d}d} | |fS )a  
    Comparing a DateOffset to the string "infer" raises, so we need to
    be careful about comparisons.  Make a dummy variable `freq_infer` to
    signify the case where the given freq is "infer" and set freq to None
    to avoid comparison trouble later on.

    Parameters
    ----------
    freq : {DateOffset, None, str}

    Returns
    -------
    freq : {DateOffset, None}
    freq_infer : bool
        Whether we should inherit the freq of passed data.
    Fr  TN)ru   r   r    )r   rp  rn   rn   ro   maybe_infer_freqy	  s   
rq  rv   DatetimeTZDtype | np.dtypec                 C  s   t | tr| jS t| d S )z
    Return the unit str corresponding to the dtype's resolution.

    Parameters
    ----------
    dtype : DatetimeTZDtype or np.dtype
        If np.dtype, we assume it is a datetime64 dtype.

    Returns
    -------
    str
    r   )ru   rD   r  r   datetime_datar   rn   rn   ro   r  	  s   
r  )rj   rk   )rq   r*   rr   r*   )r   r   rc  rk   )r  r   rr   r   )r  rk  rr   r  )r  rl  rr   rm  )rr   ro  )rv   rr  rr   rk   )
__future__r   r   r   	functoolsr   rB  typingr   r   r   r	   r
   r   r   r   r  numpyr   pandas._libsr   r   pandas._libs.arraysr   pandas._libs.tslibsr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    pandas._libs.tslibs.fieldsr!   r"   pandas._libs.tslibs.np_datetimer#   pandas._libs.tslibs.timestampsr$   pandas._typingr%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   pandas.compat.numpyr5   r  pandas.errorsr6   r7   r8   pandas.util._decoratorsr9   r:   r;   pandas.util._exceptionsr<   pandas.core.dtypes.commonr=   r>   r?   r@   rA   rB   pandas.core.dtypes.dtypesrC   rD   rE   rF   pandas.core.dtypes.genericrG   rH   pandas.core.dtypes.missingrI   rJ   pandas.corerK   rL   rM   rN   pandas.core.algorithmsrO   rP   rQ   rR   pandas.core.array_algosrS   pandas.core.arraylikerT   pandas.core.arrays._mixinsrU   rV   pandas.core.arrays.arrow.arrayrW   pandas.core.arrays.baserX   pandas.core.arrays.integerrY   pandas.core.commoncorecommonr   pandas.core.constructionrZ   r  r[   r\   pandas.core.indexersr]   r^   pandas.core.ops.commonr_   pandas.core.ops.invalidr`   ra   pandas.tseriesrb   collections.abcrc   rd   r  rf   ri  rg   rh   ri   r   rp   r   r   r   r_  r`  ra  rb  rE  rh  rj  r  rq  r  rn   rn   rn   ro   <module>   s    (
HH 


           q:?   
$

%